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Abstract

We present a method to calibrate and validate observational models that interrelate re-
motely sensed energy fluxes to geophysical variables of land and water surfaces. Coin-
cident sets of remote sensing observation of visible and microwave radiations and geo-
physical data are assembled and subdivided into calibration (Cal) and validation (Val)5

data sets. Each Cal/Val pair is used to derive the coefficients (from the Cal set) and
the accuracy (from the Val set) of the observation model. Combining the results from
all Cal/Val pairs provides probability distributions of the model coefficients and model
errors. The method is generic and demonstrated using comprehensive matchup sets
from two very different disciplines, soil moisture and water quality. The results demon-10

strate that the method provides robust model coefficients and quantitative measure of
the model uncertainty. This approach can be adopted for the calibration/validation of
satellite products of land and water surfaces and the resulting uncertainty can be used
as input to data assimilation schemes.

1 Introduction15

Observation models are widely used for estimating geophysical variables of land and
water surfaces from remote sensing data. The simplest form is the empirical linear
model, whereby coefficients are derived from regressing measured geophysical vari-
ables with observed radiation. In most cases, these empirical models have some
physical meaning and are often used because of their simplicity. Examples of land20

remote sensing applications are available from active/passive microwave remote sens-
ing of soil moisture (e.g., Njoku et al., 2002). Similarly, water quality applications uses
Lambert-Beer law to model the spectral absorption of light by suspended and dissolved
materials as a linear function of their concentrations (D’Sa and Miller, 2005; Robin-
son, 2004). Currently, such strategies are proposed for NASA’s Soil Moisture Active25

Passive (SMAP) mission combined radar/radiometer soil moisture product (Entekhabi
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et al., 2010), the Netherlands automated monitoring network (IN PLACE: Integrated
Network for Production and Loss Assessment in the Coastal Environment), and the
NASA Moderate Resolution Imaging Spectroradiometer (MODIS) mission ocean color
products (McClain et al., 2004). This type of model is developed from comprehen-
sive sets of concurrent remote sensing observations and field measurements, here-5

after referred to as matchups. Ideally, the validity of any model is tested against an
independent data set. Therefore, the available matchups are often subdivided into
independent sets used for derivation of the model coefficients (calibration) and for ac-
curacy assessment (validation). Most studies subdivide matchups into so-called Cali-
bration/Validation (Cal/Val) sets based on a statistical or regional resemblance (Devlin10

et al., 2008), but without a clear directive on its effect for model accuracy. This is
most likely the case because there is until now no objective approach for subdividing
Cal/Val sets. Many combinations of matchups can be used, specifically when using
a large number of points. Each Cal/Val pair has the same probability of occurrence,
but provides different results. As such, the selection procedure not only impacts the15

model’s accuracy, but also the accuracy assessment. On the other hand, the selection
of Cal/Val pairs can also be thought of as a stochastic sampling from a known prob-
ability distribution (e.g., Wang et al., 2005; Salama and Stein, 2009). Such stochastic
treatment of matchups within the Cal/Val context has not yet been investigated in the
field of earth observation, but has the advantage of providing a quantitative uncertainty20

measure for both the model coefficients and derived geophysical variables.
In this paper we follow a stochastic approach for selecting Cal/Val sets and demon-

strate its use for quantifying uncertainty. The developed method samples from a com-
plete matchups set to populate many sets of Cal/Val pairs. Each pair is used to
derive the model coefficients and their associated errors, from which the probabil-25

ity distributions of the calibration and validation result is determined. In this pa-
per the method is demonstrated for two data sets: i- L-band (1.6 GHz) backscatter
(σ◦) – soil moisture matchups collected during the 2002 OPE3 (Optimizing Produc-
tion Inputs for Economic and Environmental Enhancement) campaign (Joseph et al.,
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2010a,b), and ii- matchups of chlorophyll-a concentrations and derived absorption
coefficients obtained from the NASA bio-Optical Marine Algorithm Data (NOMAD, ver-
sion 2a.) (Werdell and Bailey, 2005).

2 Data sets

2.1 Land application – soil moisture5

The 2002 OPE3 campaign focused on the active and passive microwave remote sens-
ing of soil moisture throughout the corn growth cycle. Part of the field activities con-
sisted of weekly C- (4.75 GHz) and L- (1.6 GHz) band σ◦ measurements with the
NASA/George Washington University (GWU) truck-mounted scatterometer. Further
in support of these remote sensing observations, an extensive ground sampling was10

conducted that included soil moisture. Full details on the data sets collected during
the field campaign can be found in Joseph et al. (2010a,b). Here, we only make use
of the 75 matchups between the L-band HH polarized σ◦ observed from a 35◦ view
angle and the measured soil moisture; hereafter referred to as the OPE3 matchups.
The σ◦ observations are corrected for vegetation effects through application of method15

described in Joseph et al. (2008), which results in the σ◦ representative for a bare soil
surface. Many studies (e.g., Ulaby et al., 1984; Champaign and Faivre, 1997; Njoku
et al., 2002) have demonstrated the following linear relationship between soil moisture
and σ◦ observed under the same land cover conditions,

sm=aσ◦+b (1)20

where, sm is the soil moisture content (m3 m−3), a is the slope (m3 m−3 dB−1) repre-
senting the σ◦ sensitivity to soil moisture, and b is the offset (m3 m−3) accounting for
the baseline effects, such as surface roughness, topography, land cover. Both the σ◦

sensitivity to soil moisture and the baseline effects depend on the sensing configura-
tion (e.g. wavelength, polarization, view angle) as well as the land surface (e.g. surface25

roughness, land cover, topography).
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2.2 Water application – chlorophyll-a absorption

The NASA bio-Optical Marine Algorithm Data (NOMAD, version 2a.) set includes mea-
surements of spectral remote-sensing reflectances, spectral marine absorption and
backscattering coefficients, and concentrations of water constituents (Werdell and
Bailey, 2005). Here, we use only chlorophyll-a (chl-a) measurements derived from5

high performance liquid chromatography (HPLC). The observed radiance spectra and
matching HPLC-derived chl-a concentration consist of 424 matches, hereafter referred
to as the NOMAD matchups. The general practice is to derive the absorption coeffi-
cients from the observed radiance spectra using semi-analytical inversion models (e.g.,
Van Der Woerd and Pasterkamp, 2008; Maritorena et al., 2002). Lambert-Beer law is10

then employed to estimate the absorption per unit mass from derived absorption coef-
ficients and measured concentrations.

The chl-a absorption coefficients at the blue band (λ0 =440 nm) are derived from the
observed radiances using the cross entropy method as reported in Salama and Shen
(2010). Following the Lambert-Beer law, the absorption coefficient of chl-a is described15

as a linear function of the concentration (D’Sa and Miller, 2005, Eq. 10),

achl-a(λ0)=a∗chl-a(λ0)Cchl-a+δ(λ0) (2)

where, achl-a(λ0) is the absorption coefficient of chl-a (m−1) at the wavelength λ0 (nm);
a∗chl-a(λ0) is the specific absorption coefficient which describes the absorption per unit

weight (m2 mg−1); Cchl-a is the concentration (mg m−3); δ(λ0) is an offset related to20

sensor noise, retrieval error of achl-a(λ0), (m−1) and the ratio of accessory pigments that
are produced in different conditions of growth (nutrients and irradiance), e.g. “xantines”
that acts as sun protection.

The two unknowns in Eq. (2), a∗chl-a(λ0) and δ(λ0), are estimated from regressing
achl-a(λ0) versus Cchl-a using linear-regression model. In practice Eq. (2) could deviate25

from linearity depending on the packaging effect, cell sizes, physiology and species
composition of the phytoplankton community (Bricaud et al., 1995). For example, the
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effect of packaging on the variability of a∗chl-a(λ0) is smaller in open oligotrophic oceans
than in upwelling regions or coastal areas where larger phytoplankton cells are abun-
dant. Hence, the deviation of Eq. (2) from linearity can then be understood based on
the water body investigated. The linearity of Eq. (2) for the used data sets is justified in
Sect. 4, Fig. 1b.5

3 Method

The method randomly subdivides the data into many sets of Cal/Val pair. The Cal
set is used to derive the coefficients of the observation model, whereas the Val set is
employed to check the accuracy of the model. The results are probability distributions
of model coefficients and their prediction uncertainties.10

The Cal/Val sets are derived from the n available matchups following two rules: i- ,
both Cal and Val sets must contain at least 7 samples (kmin =7) and ii- , each sample
is used once, either for calibration or for validation. The minimum sample size, (kmin =
7), is selected using the method of Cohen et al. (2003) to limit the error of the derived
slope to 35 % at 95 % of confidence. This value (35 %) represents the desired level of15

accuracy for satellite derived chl-a (McClain et al., 2006; Bailey and Werdell, 2006).
The number of Cal/Val pairs is computed as nr =n−2kmin. Now, for each i = [kmin,n−

kmin] the method forms a Cal/Val pair by increasing/decreasing the number of data
points in the sets. The number of possible combinations, npci , for the i th Cal/Val pair
is,20

npci =
(
n
ki

)
=

n!
ki !(n−ki )!

(3)

where n is the total number of data points, ki is the number of samples in the Cal or
Val set during the i th iteration. For data sets with, n > 20, (holds for both the OPE3

and NOMAD matchups), the number of possible combinations (npci ) is large (e.g.
1.9848 E9 for 75 over 7 in OPE3), and therefore npci is reduced to the number of used25
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combinations, nuci , by selecting nuci =10lognpci combinations from npci . In principle
each combination nuci has the same probability of occurrence, therefore the uniform
distribution is used to select nuci unique combinations from npci . Each formed Cal/Val
set is used for the calibration and the subsequent validation of the empirical model. The
validation is always performed using type-II model (Bevington and Robinson, 2003),5

while the calibration depends on the model, e.g. for linear model we use the type-
I regression. The accuracy of the empirical model is assessed using two statistical
measures: i- , the mean absolute error between derived and measured values (MAE)
and ii- the coefficient of determination (R2). The algorithm produces three probability
distributions (PDs), two for the calibration coefficients, PDc, and one for the accuracy10

measure, PDv. The above method (called GeoCalVal) is implemented in the following
steps:

1. Take ki samples for the Cal set and n−ki for the Val set;

2. Compute npci from Eq. (3) and nuci =10lognpci ;

3. Use the uniform distribution to generate nuci unique combinations of Cal sets and15

their complements for Val sets;

4. Compute model coefficients from the calibration set and store them in PDc;

5. Use the new model coefficient to estimate the geophysical variables from the Val
set;

6. Compute the uncertainty of step 5 and store them in PDv;20

7. Increase ki by one and repeat steps 1 to 7.

GeoCalVal is developed in MATLAB 2011a, The MathWorks, and the code is available
from the authors upon request.
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4 Results and discussions

The coefficients of determination, R2 of the Cal set are plotted against those of the Val
set in Fig. 1 for all possible combinations. The data point position with respect to the
X axis is an indication for the ability of the model to fit the matchups of the Cal set,
whereas its position with respect to the Y axis represents the model’s performance in5

deriving the geophysical variables, here soil moisture and chl-a absorption coefficient
(achl-a(λ0)). Obviously, both the Cal and Val R2 depend on the number of data points,
reaching their maxima when all data points are included, which suggests for the Cal
sets that the used observation models in Eqs. (1) and (2) are indeed linear.

Both OPE3 and NOMAD matchups produce a narrow region of Cal/Val pairs, for10

which the calibration R2 is similar to validation R2; about 0.75–0.85. In other words,
within these Cal/Val subdivisions the model validity and the accuracy assessment are
balanced. However, it is important to note that the Cal/Val pairs included in this region
are random. For example, the first five sets [Cal,Val] with the highest R2 in this re-
gion are [59,16]; [25,50]; [24,51]; [21,54]; [9,66] for the OPE3 and [116,308]; [353,71];15

[349,75]; [193,231]; [324,100] for the NOMAD matchups. From this we can conclude
that an optimal setup for subdividing matchups into Cal/Val sets can not be defined
a priori. The only objective approach is by evaluating all possible combination sets as
is proposed through the GeoCalVal method.

Figure 2 shows the derived probability distributions (PDs) of model coefficients, PDc,20

and the associated uncertainties, PDv, for the two matchup sets, OPE3 and NOMAD.
The resulting PDs of model coefficients have high kurtosis (acute peak around the
mean) values and flat tails, i.e. more prone to outliers. Different values of kmin were
tested (not shown) and the results shows that all derived PDs from both data sets
(OPE3 and NOMAD matchups) can be described by the t-location-scale probability25

distribution (the black lines in Fig. 2) of the form (Evans et al., 1993),

f =
Γ(0.5ν+0.5)

σ
√
νπΓ(0.5ν)

[
1+ν−1

(x−µ
σ

)2
]−(0.5ν+0.5)

(4)
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where, µ, σ and ν are the mean, standard deviation and shape factor (or the degree of
freedom), respectively. The Gamma function Γ is equivalent to the factorial function n!
extended to non-integral arguments. The distribution in Eq. (4) means that the standard
variates of the data points follow the Student t distribution. The function in Eq. (4)
is fitted to the distributions of derived model coefficients and MAEs by varying the5

parameters µ, σ and ν, which are listed in Table 1 with their standard errors.
The reason for having flat tails in the PDs of Fig. 2 is due to the fact that the accuracy

of model coefficients depends on the size of the Cal set. In other words, for a large
Cal set we expect to have higher accuracy as most data points are used, however this
makes them also sensitive to outliers in the Val set, because most of the data points10

have been used to create the Cal set. For a linear observation model the t-probability
density function should, thus, be employed to describe the distributions PDc and PDv,
regardless of the original distribution of geophysical measurements or remote sensing
observations. For example, the NOMAD matchups set has a log-normal distribution,
while OPE3 is close to uniform distribution (not shown here) for measurements, resid-15

uals and observations. Yet, the distribution of derived coefficients follows for both data
sets Eq. (4).

The detailed knowledge on the PDs of uncertainties and uncertainty sources embed-
ded within the remote sensed geophysical variable (shown in Fig. 2) can be used as
input for data assimilation schemes (Reichle, 2008). On the other hand, these PDs can20

also be employed to derive the probability distribution of uncertainty within the remote
sensing observations itself, i.e. one PD per observation. The relationship between
measurements and observations is described by a model of the form, Y= f (Φ,X), in
which Φ is the set of n model coefficients, Φ= [φ1,φ2...φn], X is the set of m geo-
physical measurements (with m>n) and Y is the corresponding remote sensing ob-25

servations. Assuming that the fluctuations in the measured quantity, X, and derived
model coefficients Φ are uncorrelated, we approximate the second moment using the
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truncated Taylor series expansion,

σ2
y =w2

xσ
2
x+

n∑
i=1

w2
φi
σ2
φi

(5)

where, w is the partial derivative of Y with respect to the measurements X and each
model coefficient, φi . The terms σ2 are the corresponding variances. For the linear
model Y = a×X +b, the uncertainty in Eq. (5) becomes σ2

y = a2σ2
x +x2σ2

a +σ2
b. The5

coefficient a and the uncertainties terms σ2
a and σ2

b are quantified from the derived
probability distributions of model coefficients, PDc. Measurements uncertainty, σ2

x , is
either assumed (e.g. NOMAD matchups) or estimated from available measurements
(e.g. OPE3). In the NOMAD data set the concentrations of chl-a were estimated us-
ing high-performance liquid chromatography (HPLC) method. Many studies (Claustre10

et al., 2004; Hooker et al., 2005) found that the error in HPLC estimation of chl-a, on
average, varies between 7 and 25 %. On the other hand, each observation site in the
OPE3 data set contains 21 soil moisture measurements. The standard deviation of
these measurements, per observation, can be used as a proxy for σx.

Estimated values of σx, a, σa and σb form the inputs to Eq. (5) to produce the PD15

quantifying the uncertainty of each remote sensing observation. This results in a PD
of uncertainty per data point which has

∑nr
i nuci number of samples, i.e. number of

all used combinations. It should, however, be noted that this uncertainty should not
be confused with observation errors associated with remote sensing retrievals, which
included also other components (e.g. model goodness-of-fit and inversion uncertainty).20

5 Conclusions

In this paper we present a method, GeoCalVal, for an objective selection of calibra-
tion/validation data sets to assess the performance of observation model for geo-
physical variables. All probable combinations of Cal/Val setup are tested resulting
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in probability distributions of model coefficients (calibration) and uncertainties in the
estimates (validation). The method is applied to two matchups sets, which shows that:

– GeoCalVal, provides an optimal setup for subdividing matchups into Cal/Val sets;

– The coefficients and associated uncertainties of linear observation models follow
the t-location scale distribution, i.e the distribution of their standard variate follows5

the Student t distribution;

– The derived PDs provide complete information on the variations of model coeffi-
cients, their uncertainties and the accuracy of observations, that can be employed
in time series analysis and data assimilation schemes;

– The presented method is applicable to any data set and can be adjusted to any10

observation model regardless of the application area, e.g. water quality or surface
hydrology.
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Table 1. Estimated parameters of the best fit t-location-scale distribution to model coefficients
and MAE uncertainties. The degree of fit is expressed in standard error.

OPE3 matchups

µ σ ν
slope [m3 m−3 dB−1] 34.0870 1.3729 2.7342
standard error 0.0160 0.0186 0.0882
intercept [m3 m−3] −26.5426 0.2137 2.7668
standard error 0.0025 0.0029 0.0887
MAE [m3 m−3] 0.0244 0.0025 3.3380
standard error 3E−05 3E−05 0.1128

NOMAD matchups

µ σ ν
slope [m2 mg−1] 0.0304 0.0013 1.9722
standard error 2.6E−6 3E−6 0.0085
intercept [m−1] 0.0195642 0.00128274 2.3505
standard error 2.6E−06 3E−06 0.0114
MAE [mg m−3] 0.6043 0.0534 3.4957
standard error 0.0001 0.0001 0.02012
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Fig. 1. Coefficients of determination between measured and observed values of: (a) soil moisture and (b) Chla

absorption coefficient. The solid line is the 1:1 reference line.
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Fig. 2. Derived probability distributions of model coefficients (a, b, d, e) and associated uncertainties (c, f) for

the OPE3 data (upper panels) and NOMAD matchups (lower panels). The solid lines are the fits by Eq.4 with

coefficients given in Table 1.
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Fig. 1. Coefficients of determination between measured and observed values of: (a) soil mois-
ture and (b) chl-a absorption coefficient. The solid line is the 1 : 1 reference line.
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Fig. 1. Coefficients of determination between measured and observed values of: (a) soil moisture and (b) Chla

absorption coefficient. The solid line is the 1:1 reference line.
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Fig. 2. Derived probability distributions of model coefficients (a, b, d, e) and associated uncertainties (c, f) for

the OPE3 data (upper panels) and NOMAD matchups (lower panels). The solid lines are the fits by Eq.4 with

coefficients given in Table 1.
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Fig. 2. Derived probability distributions of model coefficients (a, b, d, e) and associated un-
certainties (c, f) for the OPE3 data (upper panels) and NOMAD matchups (lower panels). The
solid lines are the fits by Eq. (4) with coefficients given in Table 1.
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